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Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

Italian Institute of Technology

https://vimeo.com/20042665


https://vimeo.com/20042665

Rich Sutton et al.
Neural Networks

Coi Brief History

Richard S. Sutton, and Paul J. Werbos

Stanford Vlad Mnih et. al.
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http://heli.stanford.edu/

dynamic

uncertainty/volatility

uncharted/unimagined/
exception laden

delayed consequences

requires strategy




Solution

machine with agency which | ~and
to find a strategy for solving the problem

— autonomous to some extent

probe and learn from feedback

focus on the long-term objective
explore and exploit




Reinforcement Learning

observation and
feedback on actions

action

‘maximise return E{R} . dynamics model 'policy/value function




The MDP game!

observation and
feedback on actions

INnteract
to maximise

long term
reward

action

‘maximise return E{R}

Inspired by Prof. Rich Sutton's tutorial:
hitps://www.youtube.com/watch?v=gganxyjaKe4



https://www.youtube.com/watch?v=ggqnxyjaKe4

The MDP (S,A PR,Y)

R: Immediate reward funchon
P: state transition probability P s\s a

P=1.00( I 2
P=0.0l<
JP=0.01

1

P=0.01

https://github.com/traai/basic-rl


https://github.com/traai/basic-rl

lTerminology

state or action
value function

olelile}Y;

dynamics model

=\Welfe

goal
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Terminology h

state or action
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state or action
value function

olelile}Y;
dynamics model

reward

goal



lerminology

state or action
value function

olelile}Y;
dynamics model

=\Welfe

goal



Deep Reinforcement Learning

observation and
feedback on actions

observation

action

‘maximise return E{R} . dynamics model 'policy/value function




Deep Reinforcement Learning

— Planning — Control —>-

low level controller
settorques

motion planner

abstractions ~ info loss (manual craft)




Explaining How a Deep Neural

Network Trained with End-to-End
Learning Steers a Car, Bojarski et. al., S L _I_ R L

https://arxiv.org/pdf/1704.07911.pdf

2017

https://www.youtube.com/watch?v=KnPiPOPkLAs

data mismatch



https://arxiv.org/pdf/1704.07911.pdf
https://www.youtube.com/watch?v=KnPiP9PkLAs
https://www.youtube.com/watch?v=NJU9ULQUwng

Toolbox

Standard algorithms to give you a
flavour of the norm!



DQN

image
score change
on action

action

Human-level control through deep reinforcement learning,
Mnih et. al., Nature 518, Feb 2015



experience
replay bufter

save transition in randomly sample
memory from memory

for training
= 1.1.0






11

hitps://storage.googleapis.com/deepmind-media/dgn/
DQNNaturePaper.pdf

Human-level control through deep reinforcement learning, Mnih et. al., Nature 518, Feb 2015
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https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf

orioritised
experience replay

sample
from memory
based on surprise

r+~ max Q(s’',a’,w™) — Q(s, a, w)

a/

Prioritised Experience Replay, Schaul et. al., ICLR 2016
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Q(s, a) = V(s) + A (s, a)

Dueling Network Architectures for Deep RL Wang et. al., ICML 2016



however
training Is

SLOOOOOO....W



Parallel Asynchronous Iraining

value and policy based methods

https://youtu.be/0xo01Ldx3L5Q https://youtu.be/Ajjc08-iPx8 https://youtu.be/nMR5m|jCFZCw

parallel shared lock-free
agents parameters updates

Asynchronous Methods for Deep Reinforcement Learning, Mnih et. al., ICML 2016


https://youtu.be/0xo1Ldx3L5Q
https://youtu.be/Ajjc08-iPx8
https://youtu.be/nMR5mjCFZCw

shared
params

SJoules|
o|eJed

https://github.com/traai/async-deep-rl


https://github.com/traai/async-deep-rl

So 2016...

Can we train even faster?



PAAC

artificial
intelligence

/‘\ telenor @ NTNU

(Parallel Advantage Actor-Critic)

it
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https://github.com/alfredvc/paac

Efficient Parallel Methods for Deep Reinforcement Learning,

1 GPU/CPU

Reduced
training time

SOTA
performance

A. V. Clemente, H. N. Castején, and A. Chandra, RLDM 2017 Alfredo

Clemente


https://github.com/alfredvc/paac

Challenges and SOTA

Data Efficiency
Exploration
Temporal Abstractions
Generalisation



Data Efficiency

LLLLL




Demonstrations

observation and
feedback on action

- ’
- e e B
_—

past

observations,
action,
feedback

action

Learning from Demonstrations for Real World Reinforcement Learning,
Hester et. al., arXiv e-print, Jul 2017
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https://www.youtube.com/watch?v=JR6wmlLaYuu4


https://www.youtube.com/watch?v=JR6wmLaYuu4

AtNASION

https://www.youtube.com/watch?v=1wsCZk0Im54


https://www.youtube.com/watch?v=1wsCZk0Im54

s EsIoN

https://www.youtube.com/watch?v=B3pf7NJFtHE


https://www.youtube.com/watch?v=B3pf7NJFtHE

Deep RL with Unsupervised
Auxiliary lasks

Use
repl ay buffer observation and
Wisely feedback on actions

action

Reinforcement Learning with Unsupervised Auxiliary Tasks,
Jaderberg et. al. ICML 2017



Agent LSTM

(a) Base A3C Agent
VT V. VT

Agent ConvNet

Aux DeConvNet
Aux FC net

INI4®

Replay Buffer
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t'r—3 tr—2 br— 1
(¢) Reward Prediction

(b) Pixel Control

Reinforcement Learning with Unsupervised Auxiliary Tasks, Jaderberg et. al. ICML 2017



Q Agent LSTM
A Agent ConvNet

v Aux DeConvNet
CO Aux FC net

(a) Base A3C Agent

Replay Buffer

............... | learn to act to
affect pixels
e.qg. if grabbing

fruit makes it disappeatr,
agent would do it

(b) Pixel Control



Q Agent LSTM
A Agent ConvNet

v Aux DeConvNet
CO Aux FC net

(a) Base A3C Agent

Replay Buffer

predict
short term reward

t'r—3 tr—2 br— 1
(¢) Reward Prediction

e.g. replay pick key
series of frames



O Agent LSTM
A Agent ConvNet

V Aux DeConvNet
CO Aux FC net

(a) Base A3C Agent

Replay Buffer

predict
long term reward



Labyrinth Performance

Avg. TOP 3 agents
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Reinforcement Learning with Unsupervised Auxiliary Tasks, Jaderberg et. al. ICML 2017



https://deepmind.com/blog/reinforcement-learning-
unsupervised-auxiliary-tasks/




Distributional RL

observation and
feedback on actions

Q(s, a)

action

A Distributional Perspective on Reinforcement Learning,
Bellemare et. al., ICML 2017



Normal DQN target:
[sample reward after step + discounted
porevious return estimate from then on]

BUT this:
[fuse = with discounted previous return
distribution]

vP"Z

A Distributional Perspective on Reinforcement Learning, Bellemare et. al., ICML 2017



Laser m=
Left+Laser

Right+Laser
— Right
l Left m=

o il

eturn

Probability

0.0

Figure 4. Learned value distribution during an episode of SPACE
INVADERS. Different actions are shaded different colours. Re-
turns below O (which do not occur in SPACE INVADERS) are not
shown here as the agent assigns virtually no probability to them.

‘It | shoot now, it Is game over for me”

A Distributional Perspective on Reinforcement Learning, Bellemare et. al., ICML 2017
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A Distributional Perspective on Reinforcement Learning, Bellemare et. al., ICML 2017
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A Distributional Perspective on Reinforcement Learning, Bellemare et. al., ICML 2017



EXploration
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Curiosity Driven Exploration

observation and
feedback on action

action



Curiosity Driven Exploration

curiosity as
next state
prediction error

next state
prediction next state

state

action é
—

prediction action

action

... only focus on
relevant
parts of state

Curiosity-driven Exploration by Self-supervised Prediction,
Pathak, Agrawal et al., ICML 2017.



Curiosity Driven Exploration
by Self-Supervised
Prediction

ICML 2017

Deepak Pathak, Pulkit Agrawal, Alexei Efros, Trevor Darrell
UC Berkeley

https://github.com/pathak22/noreward-rl
hitps://pathak?22.github.io/noreward-rl/


https://pathak22.github.io/noreward-rl/
https://github.com/pathak22/noreward-rl

Temporal Abstractions

&&&&&




HRL with pre-set Goals

meta-controller

MC ,, chooses goals

LLLLL

| A
action
C -
controller
select chooses
primitive .
actions actions

Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction
and Intrinsic Motivation, T. D. Kulkarni, K. R. Narasimhan et. al. NIPS 2016



Meta

Controller
termination goal

(death) reached

Controller
3
Meta
Controller
goal

reached

Controller

9 10 11 12

Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni, K. R. Narasimhan et. al. NIPS 2016



pre-defined goal
- selected by
meta-controller

ALAA

Hierarchical Deep Reinforcement Learning: Integrating Temporal
Abstraction and Intrinsic Motivation, T. D. Kulkarni, K. R. Narasimhan et.
al. NIPS 2016



FeUdal Networks for HRL

manager
My tries to finds
o good directions
sot state
direction ) -,* L
action
W o
primitive _ Worker_
actions tries to achieve
to direction them

FeUdal Networks for Hierarchical Reinforcement Learning, Vezhnevets et. al. ICML 2017
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Goal count

-

Time step 180

FeUdal Networks for Hierarchical Reinforcement Learning, Vezhnevets et. al. ICML 2017



(Generalisation




Meta-learning
| earn to Learn

Versatile agents!

Transfer Good features for
learning works decision making”’
with Images

(RIS S L T P et AP A,
http://www.derinogrenme.com/2015/07/29/makale-imagenet-large-scale-visual-
recognition-challenge/




learn
to go East

=
=

=

learn to
reduce learning
time to go to X




Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks.
C. Finn, P. Abbeel, S. Levine. ICML 2017.

1- - u »
| h - - -, B - v.. -— e = . —

"
‘-‘ 0 grad/opt step:
policy ready
to learn

1 grad/opt step:
learnt to
achieve goal

http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
Code: https://github.com/cbfinn/maml_r|
Videos: https://sites.google.com/view/maml


https://github.com/cbfinn/maml_rl

Domain Ranaomisation

Generalising
from Simulation



Sim-to-Real Transfer of Robotic Control with Dynamics Randomization, Peng et
al. arXiv preprint, 18 Oct 2017

https://blog.openai.com/generalizing-tfrom-simulation/



(Generalisation via
Selt-play



Deep RL in AlphaGo Zero

Improve
thinking and intuition
with feedback from self-play
[zero human game data]

observations
win/lose/draw

Mastering the game of Go without human knowledge, Silver et.al., Nature, Vol. 550, October 19, 2017



Very High Level Mechanics

reS|duaI block
of conv layers
[39 to 79 layers]
+

p and v heads

PREVEICCREVEIS]
[Xt, Yt, Xt-1, Yt-1, ..., Xt-7, Yt-7, C]

play to
the end

................ >




Self-play to end gf game
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NN training: learn to evaluate
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Self-play step: select move by simulation + evaluation

a. S:Iect b. Expand and evaluate C. Bajckup d. Play
%}\Q +U @ E-\() &
3 13 2IIRlt 4 2 AT
Q+Uﬁax ‘y‘ l N
R (p,v)=fegy@\1)3 88 TR ’

Mastering the game of Go without human knowledge, Silver et.al., Nature, Vol. 550, October 19, 2017



! ! ! ! ! !
10 15 20 25 30 35

w=ww AlphaGo Zero 40 blocks  eeee AlphaGo Lee seee AlphaGo Master

https://deepmind.com/blog/alphago-zero-learning-scratch/




AlphaGc 5

Discovering e vm ledge

https://deepmind.com/blog/alphago-zero-learning-scratch/
https://www.youtube.com/watch?v=WXHFgTvfFSw


https://www.youtube.com/watch?v=WXHFqTvfFSw

Inspired to
study RL much?

Next lecture:
Building Blocks of (Deep) RL
November 8, 2017

https://join.slack.com/t/deep-rl-tutorial/signup


https://join.slack.com/t/deep-rl-tutorial/signup

