Deep Reinforcement Learning Applications + Hacking

Arjun Chandra Research Scientist Telenor Research / Telenor-NTNU AI Lab <u>arjun.chandra@telenor.com</u> Signologer

21 November 2017

https://join.slack.com/t/deep-rl-tutorial/signup

The Plan

Few words on applications (not exhaustive...)

Games

Board Games, Card Games, Video Games, VR, AR, TV Shows (IBM Watson)

Robotics

Thermal Soaring, Robots, Self-driving *, Autonomous Braking, etc.

Embedded Systems

Memory Control, HVAC, etc.

Internet/Marketing

Personalised Web Services, Customer Lifetime

Energy

Solar Panel Control, Data Centres

Cloud/Telecommunications

Scaling, Resource Provisioning, Channel Allocation, Selforganisation in Virtual Networks

Health Treatment Planning (Diabetes, Epilepsy, Parkinson's, etc.)

Maritime

Decision Support

... growing list

Hack

Backgammon

move

play to the end...

TD-Gammon 0.0

- No Backgammon knowledge
- NN, Backprop to represent and learn
- Self-play TD to estimate returns
- Good player beating programs with expert training and hand crafted features

TD-Gammon >1.0++

v() of simulated next moves inform v() of move to play

Simulation:

mulatior

- -> own move given dice roll
- -> opponent dice roll
- -> opponent move

Assume opponent choses best value move.

Best move given opponent's best move is selected.

Specialised Backgammon features

- NN, Backprop to represent and learn
- Self-play TD and decision time search, to estimate returns
- World class impacted human play

1992, 1994, 1995, 2002...

NB. impacted human play, raised human caliber

Program	Hidden	Training	Opponents	Results	
	Units	Games			
TD-Gammon 0.0	40	300,000	other programs	tied for best	
TD-Gammon 1.0	80	300,000	Robertie, Magriel,	-13 pts / 51 games	
TD-Gammon 2.0	40	800,000	various Grandmasters	-7 pts / 38 games	
TD-Gammon 2.1	80	1,500,000	Robertie	-1 pt / 40 games	
TD-Gammon 3.0	80	1,500,000	Kazaros	+6 pts / 20 games	

Combination of **learnt value function** and **decision time search** powerful!

Deep RL in AlphaGo Zero

Improve planning (search) and intuition (evaluation) with feedback from self-play [zero human game data]

Mastering the game of Go without human knowledge, Silver et.al., Nature, Vol. 550, October 19, 2017

Deep Net

X: 1/0 player stones Y: 1/0 opponent stones C: player, all 1 black, all 0 white

NN training: learn to evaluate

$$l = (z - v)^2 - \boldsymbol{\pi}^{\mathrm{T}} \log \boldsymbol{p} + c \|\boldsymbol{\theta}\|^2$$

Self-play step: select move by simulation + evaluation

Mastering the game of Go without human knowledge, Silver et.al., Nature, Vol. 550, October 19, 2017

Thermal Soaring


```
simulation
```

state: (local, descritised) acceleration (a_z), torque, velocity (vz), temperature action: bank +/-, no-op reward: after step v_z + Ca_z goal: climb to cloud ceiling

Lift L

bank angle

Learning to soar in turbulent environments, Gautam Reddy et. al., PNAS 2016

Memory Control

scheduler is the agent

http://incompleteideas.net/sutton/book/the-book-2nd.html

state: based on contents of transaction queue,
e.g. #read requests, #write requests, etc.
action: activate, precharge, read, write, no-op
reward: 1 for read or write, 0 otherwise
goal: (max read/write ~ throughput)
constraints on valid actions/state

H/W implementation of SARSA

http://incompleteideas.net/sutton/book/the-book-2nd.html

Dynamic multicore resource management: A machine learning approach Martinez and Ipek, IEEE Micro, 2009

Personalised Services

(content/ads/offers)

#clicks

#visits

#clicks

#visitors

 $CTR = \frac{6}{17} \approx 0.35$

 $LTV = \frac{6}{4} = 1.5$

http://incompleteideas.net/sutton/book/the-book-2nd.html

state: (per customer)
time since last visit,
total visits,
last time clicked,
location,
interests,
demographics
action: offers/ads
reward: 1 click, 0 otherwise

(s,a,r,s') tuples from the past policies

sampled tuples and train random forest to **predict return** (fitted Q iteration ~ DQN)

goal

policy

encouraging

users to engage

in extended

interactions

Personalized Ad Recommendation Systems for Life-Time Value Optimization with Guarantees. Theocharous et. al. IJCAI, 2015

Solar Panel Control

Bandit-Based Solar Panel Control David Abel et. al. IAAI 2018

Improving Solar Panel Efficiency using Reinforcement Learning. David Abel et. al. RLDM 2017

Solar tracking — pointing at sun enough? Missing:

- diffused radiation
- reflected ground/snow/surroundings
- power consumed to reorient
- shadows foliage, clouds etc.

state: panel orientation, relative location of sun
OR downsampled 16X16 image
actions: set of discrete orientations
OR tilt forward/back/no-op
reward: energy gathered at time step
goal: maximise energy gathered over time

Approach	Total Energy Gathered (J)
lin-ucb	77103.19
sarsa	12219.55
grena-tracker	26600.33

https://github.com/david-abel/solar_panels_rl

Hack

Code

Clone this repo: https://github.com/traai/drl-tutorial

Go through **README** to set up Python environment and read through the tasks. Build on provided code/code from scratch.

Use Slack for questions:

https://join.slack.com/t/deep-rl-tutorial/signup

Value Based (DQN)

Catch fruit in basket!

state: 1 for fruit, 1s for basket

array([[0.,	0.,	0.,	0.,	0.,	0.,	1.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],
	0.,	0.,	0.,	0.,			1.,	0.,	0.,	0.]])

actions: left, right, no-op

rewards

- +1: fruit caught
- -1: fruit not caught

0: otherwise

goal: catch fruit (!)

Simple DQN solution:

https://github.com/traai/drl-tutorial/blob/master/value/dqn.py

Policy Based

Balance a pole!

state

Num	Observation	Min	Max
0	Cart Position	-2.4	2.4
1	Cart Velocity	-Inf	Inf
2	Pole Angle	~ -41.8°	~ 41.8°
3	Pole Velocity At Tip	-Inf	Inf

action

Num	Action		
0	Push cart to the left		
1	Push cart to the right		

reward: 1 for each step goal: maximise cumulative reward

https://github.com/openai/gym/wiki/CartPole-v0

Simple PG solution: <u>https://github.com/traai/drl-tutorial/blob/master/pg/pg.py</u>